Patricia Kelbert

Patricia Kelbert ist seit 2017 am Fraunhofer IESE, und seit 2020 in der Abteilung Data Science als Data Scientist tätig. Sie hat in Frankreich an der »Université de Strasbourg« Bioinformatik studiert und dort im Jahr 2005 ihren Master abgeschlossen. Sie beschäftigt sich seit langem intensiv mit Programmierung, Software Engineering, Datenbanken und Datennutzungskontrolle über verschiedene Fachgebiete hinweg (Biodiversität, Genetik, Pharma & Gesundheit, Landwirtschaft).

Potenzial von KI in Unternehmen: Ist ein LLM der Hammer für alle Schrauben?

In Episode 33 des MORGEN DENKER Podcasts diskutierten unsere Experten (Andreas Jedlitschka, Julien Siebert und Thorsten Honroth) das Thema LLM. Der Titel des Podcasts: »LLM: der Hammer für alle Schrauben?«. So humorvoll dieser Podcast-Titel auch klingen mag, offenbart er eine…

Wie funktionieren LLMs? Ein Blick ins Innere großer Sprachmodelle

In diesem Blogbeitrag erklären KI-Expertinnen und Experten, welche Komponenten zu LLMs (Large Language Models, deutsch: große Sprachmodelle) gehören. Die Funktionsweise eines LLMs: 4 Schritte bis zum Ergebnis Große Sprachmodelle, wie wir sie heute kennen, sind nur die Spitze des Eisbergs….

Retrieval Augmented Generation (RAG): Chatten mit den eigenen Daten

Retrieval Augmented Generation (RAG) ergänzt das Generieren eines Large Language Models (LLM, auf Deutsch: großes Sprachmodell) durch eine gute Suche, z.B. in einer Dokumentensammlung, in einer Datenbank oder in einem Knowledge Graph. Hierdurch lässt sich die Verlässlichkeit (Dependable AI) des…

Prompt Engineering: wie man mit großen Sprachmodellen kommuniziert

In diesem Blogbeitrag erklären unsere Expertinnen und Experten, was Prompt Engineering ist und wie diese Techniken für die Nutzung von LLMs (Large Language Models, deutsch: große Sprachmodelle) nützlich sein können. Weitere Blog-Beiträge rund um generative KI und große Sprachmodelle: Was…

Large Action Models (LAMs) nutzen neurosymbolische KI – Die nächste Stufe im Hype rund um Generative AI

Was ist ein Large Action Model? Der Begriff »Large Action Model« (LAM) lehnt sich an den Begriff »Large Language Model« (LLM, deutsch: großes Sprachmodell) an, führt dieses aber noch eine Stufe weiter. Sprachmodelle (wie z.B. GPT) nehmen natürlichsprachige Anweisungen als…

Open Source Large Language Models selbst betreiben

Ein Open Source Large Language Model (LLM, auf Deutsch: großes Sprachmodell) bietet zahlreiche Vorteile, und diese großen Sprachmodelle haben im Jahr 2023 einen weiten Sprung nach vorne gemacht: Sie sind sehr leistungsfähig geworden und können mittlerweile mit moderaten Hardwareanforderungen betrieben…

Was sind Large Language Models? Und was ist bei der Nutzung von KI-Sprachmodellen zu beachten?

In diesem Artikel tauchen wir in die faszinierende Welt der KI-Sprachmodelle ein, wobei der Schwerpunkt auf den Large Language Models (LLMs) liegt, zu denen bekannte Vertreter wie ChatGPT gehören. Sie wollen Künstliche Intelligenz für Ihr Unternehmen nutzen? Erfahren Sie, wie…

KI-Vorhersagen auf der Spur – oder: Wie ein gutes Uncertainty Management den Umgang mit KI-Modellen erleichtert

Der Umgang mit Unsicherheiten stellt bei der Nutzung von KI-Vorhersagen in vielen Anwendungsbereichen einen entscheidenden Faktor dar. Das gilt insbesondere in der Medizin und beim autonomen Fahren. In der Medizin kann der Umgang mit Unsicherheit dazu beitragen, dass sich KI-Modelle…

Data Quality in Agriculture

Growing the Future: Overcoming Data Quality Problems in Agriculture

Farmers around the world, including in the EU, face many challenges. Their daily work and businesses need to be rethought in order to reduce the negative impact on the environment and achieve a sustainable economy in the long term. For…

Predictive Maintenance umsetzen: Wie geht das?

Wäre es nicht wunderbar, Sie könnten in die Zukunft schauen und zum Beispiel die Lebensdauer von Ihren Produkten und Systemen vorhersagen? In diesem Artikel sprechen wir, das Fraunhofer IESE, darüber, was Predictive Maintenance ist und für was man es einsetzen…