Machine Learning

Dealing with uncertainties of Machine Learning components (Part 2)

Using Machine Learning components in critical systems requires a sound safety concept and the ability to argue and prove that the risk of the considered system is acceptably low. In our previous blog post (Dealing with uncertainties of Machine Learning…

Potenzial von KI in Unternehmen: Ist ein LLM der Hammer für alle Schrauben?

In Episode 33 des MORGEN DENKER Podcasts diskutierten unsere Experten (Andreas Jedlitschka, Julien Siebert und Thorsten Honroth) das Thema LLM. Der Titel des Podcasts: »LLM: der Hammer für alle Schrauben?«. So humorvoll dieser Podcast-Titel auch klingen mag, offenbart er eine…

Data augmentation with Generative AI – How well does ChatGPT 4o create images with realistically appearing quality deficits?

Enhancing datasets by adding input variations or data quality deficits is often done using data augmentation approaches. These approaches employ classical image processing techniques, Deep Learning models like Convolutional Neural Networks (CNNs), or Generative Adversarial Networks (GANs). With the rise…

Dealing with uncertainties of Machine Learning components (Part 1)

The use of Machine Learning (ML) components in safety-critical or financially critical systems is challenging. At Fraunhofer IESE, we address this challenge by systematically engineering comprehensive multi-layered safety concepts and explicitly considering sources of uncertainties. This specifically includes situations at…

Datenqualität und Kausalität bei auf Machine Learning basierender Software

Eine gute Datenqualität ist entscheidend für die Zuverlässigkeit von Systemen, die auf Machine Learning und Künstlicher Intelligenz basieren. Data Scientists verbringen daher die meiste Zeit damit, Daten vorzubereiten und Probleme mit der Datenqualität zu lösen. In diesem Blogbeitrag erläutert unser…

Die Zukunft des Sprachassistenten: Datenhoheit durch Spracherkennung mit eigenem LLM Voice Bot

In einer Welt, in der Technologie immer weiter voranschreitet, sind sprachgesteuerte Assistenten zu einem nicht mehr wegzudenkenden Teil unseres Alltags geworden. Von IBM Watson und Aleph Alpha Luminous über Apple Siri und Amazon Alexa bis hin zu Google Assistant und…

Large action models (LAMs), tool learning, function calling and Agents

Zu Beginn des Jahres 2024 wurde der Begriff „Large Action Model“ (LAM) mit dem Release von Rabbit R1 in der Öffentlichkeit bekannt. Parallel dazu haben sich Large Language Models (LLM) und multimodale Modelle als nützlich erwiesen, um Roboter besser zu…

DIN SPEC 92005 – Standardizing uncertainty in machine learning?

DIN SPEC 92005 has been publicly available since January 2024. It deals with the quantification of uncertainties in Machine Learning (ML) and was developed in collaboration with Fraunhofer IESE, which also provided the deputy chairman. Dieser Artikel ist auch in…

Klinische Entscheidungsunterstützungssysteme (engl. Clinical Decision Support Systems) erfahren eine Neuauflage und können helfen, unser Gesundheitssystem zu entlasten.

Diagnose auf Knopfdruck: Wenn klinische Entscheidungsunterstützungssysteme den entscheidenden Hinweis geben!

In seiner Comicreihe »Näher als wir denken!« prophezeite der amerikanische Künstler Arthur Radebaugh bereits in den 1960er Jahren den Einsatz von Computern zur Entscheidungsunterstützung in der Medizin. In den 1970er Jahren gingen die ersten klinischen Entscheidungsunterstützungssysteme (engl.: »Clinical Decision Support…

DIN SPEC 92005 – Unsicherheit im Maschinellen Lernen standardisieren?

Die DIN SPEC 92005 ist seit Januar 2024 öffentlich verfügbar. Sie beschäftigt sich mit der Quantifizierung von Unsicherheiten im Maschinellen Lernen (ML) und entstand unter Mitwirkung des Fraunhofer IESE, das auch den stellvertretenden Obmann stellte. This article is also available…