Machine Learning

Integrated Process Planning and Scheduling for Service-based Production with Deep Reinforcement Learning (Part 1)

Current industrial production scheduling approaches assume that process planning is performed before scheduling and that process plans are fully or at least partially available before scheduling starts. However, this is not the case in service-based production [5]. Service-based production provides…

Data Quality in Agriculture

Growing the Future: Overcoming Data Quality Problems in Agriculture

Farmers around the world, including in the EU, face many challenges. Their daily work and businesses need to be rethought in order to reduce the negative impact on the environment and achieve a sustainable economy in the long term. For…

Predictive Maintenance umsetzen: Wie geht das?

Wäre es nicht wunderbar, Sie könnten in die Zukunft schauen und zum Beispiel die Lebensdauer von Ihren Produkten und Systemen vorhersagen? In diesem Artikel sprechen wir, das Fraunhofer IESE, darüber, was Predictive Maintenance ist und für was man es einsetzen…

Causal inference: An introduction on how to separate causal effects from spurious correlations in data

What is causal inference in statistics data science? While „correlation does not imply causation“, it is possible to identify causal effects even in data that does not come from randomized controlled trials. Our AI expert, Dr. Julien Siebert, just published…

»AI Innovation Labs« als Tool zur zielgerichteten Ermittlung der KI-Tauglichkeit von Unternehmen

KI-Systeme stellen Unternehmen vor große Herausforderungen. Sogenannte »AI Innovation Labs« können dazu beitragen, bestehende Hürden zu bewältigen. Sie sind ein Methoden- und Werkzeugbaukasten, um die richtigen KI-getriebenen Geschäfts- und Anwendungsfälle für Ihr Unternehmen zu identifizieren, Prototypen mit KI-Technologie zu erstellen…

Time Series Analysis: Pattern Recognition

Time Traveling with Data Science: Pattern Recognition, Motifs Discovery and the Matrix Profile (Part 4)

In Part 4 of our Fraunhofer IESE blog series on „Time Traveling with Data Science“, we continue our journey in the field of time series analysis. In this blog post, our experts from Fraunhofer IESE and our guest author Markus…

Agile Machine-Learning-Prozesse für KMU

Agile Machine Learning-Prozesse für KMU

Agile Machine Learning-Prozesse können für kleine und mittelständische Unternehmen (KMU) ein wahrer Erfolgsfaktor sein: Agile Praktiken haben sich als großer Vorteil bei der Entwicklung von Software-Systemen bewährt. Mit dem Wandel zu datengetriebenen Produkten und Dienstleistungen müssen nun jedoch diese Software-Entwicklungsprozesse…

Time Series Analysis: Outlier Detection

Time Traveling with Data Science: Outlier Detection (Part 3)

In our blog series on „Time Traveling with Data Science“, we previously introduced different tasks in time series analysis. In this blog post, we now present the task of Outlier Detection. Outliers are data so different from others that one…

Scope Compliance

Scope Compliance – Die Rolle des Anwendungskontexts im Machine Learning

Im Rahmen unserer Blogreihe »Scope Compliance« beschäftigen wir uns mit der Bedeutung des Anwendungskontexts im Machine Learning. Im ersten Beitrag klären wir ein häufig anzutreffendes Missverständnis auf und arbeiten seine Implikationen für die Praxis heraus. Sie erfahren, warum es entscheidend…

Hyperspektrale Soft-Sensorik für das Monitoring im Weinbau – Maschinelles Lernen für die Praxis

Der Weinanbau ist ein Wirtschaftszweig von globaler Bedeutung mit hohen Ansprüchen an die Erzeugerqualität. Mittels eines durchgehenden digitalen und durch Sensoren unterstützten Monitorings soll frühzeitig auf Risiken reagiert werden. Die Anforderungen an solch ein Monitoringsystem unterscheiden sich erheblich je nach…