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Abstract 

A limiting factor for the large-scale deployment of 
autonomous off-road machinery is the lack of reliability 
and proof of safety. Assuring these aspects is not just 
complex but hard, and remains an open research topic: 
Off-road domains are frequently changing, and the 
overall variability prevents the consideration of every 
important aspect of the environment or situation 
during the development phase. In contrast, humans are 
extremely capable of adapting to unforeseen events 
and acting safely under such uncertainty. A common 
strate-gy is therefore to adopt biology-inspired methods, 

like implementing human-like cognition and reasoning, 
to maintain safety.

This whitepaper highlights research approaches aimed at 
addressing the abovementioned challenges, including handling 
perceptive uncertainty by imitating human cognition.  
Also, it depicts how safety and availability can be simultane-
ously increased by considering the situa-tional context.  Finally, 
it  provides an outlook on future research concerning the 
 limitations of robotic systems, such as acquiring new skills in 
unforeseen situations and reasoning about the given context.

Abstract 
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Introduction

Introduction

In the past, many technology demonstrators highlighted the 
capabilities of autonomous off-road machinery [1, 2]. A limiting 
factor for the large-scale deployment of such systems is the 
lack of reliability and proof of safety. Off-road environments 
are more complex and unstructured than on-road scenarios. 
Thus, unforeseen situations arise frequently and must be han-
dled autonomously and safely. A primary difference between 
autonomous and traditional systems is that the surroundings 
and specific situations have become a part of the autonomous 
system itself, in addition to the system. Accordingly, creating 
sophisticated automated machinery mainly addresses two 
fields of research: robotics and safety engineering.

Various challenges must be addressed to achieve reliable and 
safe machine autonomy.

Challenge 1: Autonomy and reliability

The first is to empower the machinery to solve the overall task, 
such as navigating to a target destination or working auton-
omously in a hazardous environment. This includes deploying 
specialized hardware, sensor systems, software frameworks, 
and advanced control and perception concepts to realize the 
system’s autonomy.

Challenge 2: Safety

Complementary to robotic research, safety engineering sys-
tematically assesses hazards and risks to reduce the impact of 
failures or mitigate harm to an acceptable level. The goal is to 
ensure safety during design and runtime. Accordingly, many 
safety standards, such as ISO 13849: 2021 (Safety of machin-
ery – Safety-related parts of control systems) or IEC 62061: 
2023 (Safety of machinery – Functional safety of safety-related 
control systems), describe precise safety measures.

Challenge 3: Complexity of the domain

A unique property of the off-road domain is its environmen-
tal versatility and variability. Specifying an operational design 
domain (ODD) aims to subdivide the general problem space 
and define safety boundaries for the system, such as provided 
by ISO 34503: 2023 (Road Vehicles – Test scenarios for auto-
mated driving systems – Specification for operational design 
domain). For example, an ODD will define precise conditions 
for an algorithm to work safely [3], such as daytime and illumi-
nation thresholds. Unfortunately, off-road complexity makes it 
hard to specify and describe necessary properties completely 
[4]. The high number of permutations leads to a vast set of 
rules even for simple off-road environments, preventing the 
scaling of such a solution [5]. Therefore, state-of-the-art ODD 
approaches are not yet considered significantly advanced for 
off-road scenes.

Challenge 4: Being performant and safe

Traditional safety engineering and safety assurance limit the 
performance of autonomous systems because they are often 
over-restrictive [6, 7]. Hazardous situations arise from specific 
and unforeseen circumstances. Therefore, worst-case assump-
tions are frequently applied to address such events. However, 
they rarely occur and restrict overall performance.

This whitepaper provides insight into research addressing 
these challenges. Initially, a review of sources of uncertainty 
highlights the shortcomings and challenges of state-of-the-art 
perception and control systems. Furthermore, adopting human 
cognition strategies enables machinery to reason about its 
surroundings and adapt to the unforeseen. Finally, incorporat-
ing situational conditions into a vehicle’s safety allows tailoring 
safety to the actual circumstances.
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Sources of uncertainty

Sources of uncertainty

In general, robot perception must address different kinds of 
uncertainty that negatively affect performance and, subse-
quently, decision-making and safety. Autonomous machinery 
relies strongly on sensors to perceive its surroundings, which 
is part of a robot’s bottom-up processing. Therefore,  handling 
sensory disturbances is essential. Different sources of 
sensory uncertainty exist that have to be addressed. First, the 
sensing principle affects measurement quality. For exam-
ple, a laser beam scatters over distance, and camera-intrinsic 
parameters define the appearance of an image [8]. Also, the 
vehicle itself acts on sensors due to the driving or working 
task, vibrations, and motions. Moreover, environmental 
disturbances affect measurements, such as illumination, 
weather, or dust [9]. In addition, object-based disturbances 
exist, including obstructed, dirty, or altered objects.

Context-based uncertainty affects top-down processing. 
Off-road scenes change properties, such as the ground friction 
of a rocky surface over the course of a day, which is not easily 
perceivable but requires domain knowledge and experience.

Additionally, model- or rather modeling-based uncer-
tainties exist. This source of uncertainty is related to linking 
sensory information to context information. For example, tree 
detection can be realized by detecting cylindric structures 
in the environment [10]. However, such detectors work only 
for specific environments and under certain conditions [11]. 
 Especially for Machine Learning systems, this topic covers 
 additional aspects such as training data selection, model setup, 
and assurance of scope compliance [12, 13].

Fig. 1: Deep furrows change the appearance of a track Fig. 2: Sources of uncertainty and the semantic gap of linking 

knowledge information with sensory data [11]
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Thinking like a human

Thinking like a human

Unlike autonomous robots, human operators are extremely 
capable of understanding particular situations and adapting 
to their surroundings. Consequently, adopting biology-in-
spired methods has great potential to improve autonomous 
machinery.

Human perception deals with different types of uncertainties 
throughout different perceptive processing steps.

Fig. 3: Stages of human cognition [11, 14]

Applying extra processing steps to perception systems signifi-
cantly increases perceptive performance and reliability [11].

Pre-attentive processing can be realized through systematic 
quality assessment. This allows bottom-up evaluation and 
filtering of low-quality data before the actual processing hap-
pens. Therefore, it can reduce false detection during later pro-
cessing since algorithms operate only on data with known and 
tolerable absolute data quality measures, such as a particular 
maximum standard deviation of data points. This processing 
step and the resulting data quality evaluation support fulfilling 
the widely adopted standard ISO 21448: 2022 (Road vehicles – 
Safety of the intended functionality (SOTIF)).

Fig. 4: Quality assessment for image exposure evaluation

Attentive processing allows selecting relevant data accord-
ing to the current task and attractiveness of the surroundings. 
This is a guided process that is simultaneously bottom-up 
and top-down. State-of-the-art off-road machinery has many 
sensor systems that cannot be processed simultaneously, 
especially with many different classifiers running in parallel. 
Therefore, a meaningful choice has to be made at an early 
stage to ensure performance. Furthermore, controlled data 
reduction can decrease the impact of disturbances and wrong 
classifications since unrelated information is not considered for 
processing. Task-based attentive data selection uses top-level 
domain knowledge to guide perception and remove irrelevant 
information. Examples are focusing on a specific spatial driving 
or working area, object types, colors, surface roughness, or 
other properties. Attraction-based attentive processing 
completes the data selection since a purely top-down choice 
might miss relevant features. It allows focusing on salient envi-
ronmental features. Examples are sudden movements or rapid 
color changes. This completes the attentive assessment of an 
off-road scene beyond the given task.

Fig. 5: Attentive processing highlights a suddenly moving 

object, which allows prioritization 

Another key element of human-like cognition is context 
assessment. In contrast to quality and attentive assessment, 
context assessment represents pure top-down processing 
and is the link to world knowledge, memories, and past 
experiences. Such information is usually available through 
on- and offline databases or mapping information [15]. The 
dynamic incorporation of knowledge and subsequent mental 
 processing is crucial for detecting inconsistencies in prediction 
and classification.

Fig. 6: Semantic reasoning based on map and knowledge data 

allows for the rejection of implau-sible classification results 
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Behavior networks

Context assessment includes selecting classification algorithms 
according to the given context, predicting the corresponding 
classification results, and cross-checking the actual results using 
object properties, such as consistency of shape, plausibility of 
detection time, detection location, motion, and detection 
frequency.

The principle of expectation and surprise allows for evaluat-
ing overall performance and reliability. A consistent prediction 
indicates high performance, while a wrong prediction creates 
surprise. A surprise indicates a low perceptive performance. 
Thus, previous assumptions about the off-road context no 
longer apply. For example, the environment may have suddenly 
changed, or situations such as a particular object type were 
not considered. Alternatively, there could be missing parts, 
such as a person who has disappeared.

Fig. 7: Off-road track prediction (blue) using histori-cal data [16].

Therefore, perception must be able to adapt and minimize sur-
prises, e.g., by changing the perception strategy. If a surprise is 
significant and lasting, this indicates that the system is no longer 
reliable and safe. Accordingly, a minimum-risk maneuver should 
be applied to switch to a safe state.

Behavior networks

The behavior-based paradigm is well-established for creating 
safe and adaptive autonomy for off-road robots. Behavior-based 
systems are highly robust and fault-tolerant due to the funda-
mental properties of modularization and behavior interac-
tion. This modeling approach enables software decomposition 
into highly reusable behavior modules that run in parallel, 
allow multi-goal-following, and provide redundancy [11].

Fig. 8: Example of runtime selection of algorithms based on 

environmental properties and the application using behavior 

networks [11].

Unlike traditional sense-plan-act architectures, decision- making 
occurs in a decentralized manner on a component base. 
Behaviors interact through standardized interfaces to increase 
or decrease the relevance of other behaviors within the overall 
network. Behavior networks separate data flow from arbitration 
flow. This allows realizing non-discrete states and processing 
ambiguous, sometimes conflicting goals, a key benefit for 
handling off-road domains. At some point, data fusion decides 
which behavior is most relevant and resolves the ambiguities.

Examples are adaptive data fusion based on the perceived data 
quality [8] or the selection of algorithms during runtime based 
on the environmental context [11]. Consequently, behavior 
networks are exceptional at trading off contradicting goals and 
properties.

The approach is well suited for realizing complex control and 
perception systems for off-road machinery. The performance 
benefits of behavior networks compared to traditional meth-
ods have been successfully demonstrated in various use cases, 
such as forestry, agriculture, search and rescue, construction, 
and urban off-road areas.
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Was kann »Digital Health« heute schon leisten?

Situational risk assessment

Safety for autonomous off-road machinery depends strongly 
on situational circumstances. Sometimes, the scenario requires 
high availability under uncertainty. For example, robots work-
ing in disaster response or dynamic situations like hill climbing 
cannot be stopped easily but must continue their task to avoid 
severe consequences.

Consequently, hazards and corresponding safety differ accord-
ing to the situation at hand. Thus, safety must be decomposed 
based on situational risks, and situational safety param-
eters must be applied. Therefore, safety parameters must 
change during runtime. Also, the situational context must be 
linked to risk assessment and risk management to ensure high 
performance and safety at the same time.

A decomposable domain description is an initial step 
for off-road safety assessment and hazard and risk anal-
ysis. The Pegasus layered model [17] provides a promising 
approach for segmenting domains into different levels. 
The method was originally developed for on-road vehicles 
but can be transferred to the off-highway domain. First, L1 
handles spatial features such as surface geometry and 
surface conditions. Next, L2 considers infrastructure, such 
as warning panels or gates. L3 addresses temporal changes 
to the surroundings, such as a temporary trench or pathway 
blocked by a fallen tree. The next level, L4, regards dynamic 
objects in the environment, such as pedestrians, machin-
ery, or animals. L5 features environmental conditions like 
weather, temperature, humidity, and illumination. Finally, L6 
handles digital information and communication, such as 
map services.

Subdividing the domain in a structured and systematic way 

minimizes the risk of missing relevant safety features. It allows 
for comparing the performance and helps understand the 
autonomous systems by successively adding more difficulty 
and complexity.

Situational assessment, including risk assessment, is fol-
lowed by dynamic risk management (DRM). DRM represents 
assurable parameter management for the nominal safety 
function of autonomous machinery. Therefore, safety-relat-
ed parameter changes are proven safe, and DRM increases 
performance while maintaining safety, which is also called 
safetility.

A convenient DRM method is the SINADRA [18] approach, 
which uses Bayesian networks to predict the likelihood of 
risk-relevant situations and adjust the parameters of the nomi-
nal function accordingly.

Fig. 10: Example of Bayesian-based risk assess-ment of nearby 

pedestrians for an autonomous machine.

Situational risk assessment

a) Tandem roller performing autonomous asphalt compaction b) Autonomously driving Unimog in a landfill

Fig. 9: Examples of off-road robots using behavior networks [11]
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Role of safety standards

Standardization provides commonly accepted guidelines for 
developing safe machinery. Usually, standards are not legally 
binding but allow for referring to state-of-the-art technology 
and represent a consensus of the industry concerning best 
practices. Therefore, conformity to safety standards supports 
the argument that products are safe and reliable.

Safety standards also provide crucial support for industry 
as well as knowledge transfer. Companies often lack R&D 
capacity and R&D development time. Existing budgets are 
only available to bring products and new features to market 
without the capabilities to develop research transfer solutions. 
Therefore, research transfer must be addressed by standardi-
zation. Below is an overview of the most relevant safety stan-
dards for off-highway machinery.

Various standards concern the safety of machinery, such 
as the general safety standards IEC 61508: 2010 ( Functional 
safety of electrical/electronic/programmable electronic safe-
ty-related systems), ISO 12100: 2018 (Safety of machinery – 
General principles for design – Risk assessment and risk reduc-
tion), ISO/TR 22100: 2021 (Safety of machinery –  Relationship 
with ISO 12100), and the above- mentioned standards ISO 
13849 and IEC 62061.

Safety sensors and safety stops are addressed by IEC 
62998: 2021 (Safety of machinery – Safety-related sensors 
used for the protection of persons) and ISO 13850: 2015 
(Safety of machinery – Emergency stop function – Principles 
for design).

The safety evaluation and testing procedures of autonomous 
vehicles are covered by UL 4600: 2023 (Standard for Safety 
for Evaluation of Autonomous Products) and ISO 34502: 2022 
(Road vehicles – Test scenarios for automated driving systems 
– Scenario-based safety evaluation framework), including the 
standard for ODD design ISO 34503.

There is a variety of standards specifying data quality and 
uncertainty, such as ISO/IEC 23894: 2023 (Information 
technology – Artificial intelligence – Guidance on risk man-
agement), ISO TR 5469: 2024 (Artificial intelligence – Func-
tional safety and AI systems), and the successor standard ISO 
22440: 2024 (Artificial intelligence – Functional safety and AI 
systems). Uncertainty quantification is addressed by DIN SPEC 
92005: 2024 (Artificial Intelligence – Uncertainty quantifica-
tion in machine learning), ISO/IEC DIS 5259: 2023 (Artificial 
intelligence – Data quality for analytics and machine learning 
(ML)), and ISO 25223: 2021 (Information Technology – Artifi-
cial Intelligence – Guidance and requirements for uncertainty 
quantification in AI systems).

The incorporation of pre-existing software, an important 
performance factor for development, is addressed by ISO/
PAS 8926:2024 – Functional safety of Road vehicles – Use of 
pre-existing software architectural elements).

Current research efforts are concerned with transferring the 
proposed solutions to standardization. Initial successes 
include direct impact on standards such as ISO TR 5469 and 
DIN SPEC 92005.

Conclusion and takeaways

This whitepaper addressed the challenges and opportunities 
of autonomous off-road machinery. It highlighted the difficul-
ties and uncertainties of perception, the corresponding safety 
issues, and the need for standardization. The paper proposed 
a biology-inspired concept for designing self-adaptive systems 
that adapt to their surroundings and current context. Situation-
al risk assessment allows for decomposing safety functionality 
and tailoring safety margins appropriate for such context.

Different takeaways indicate future developments of autonomous 
systems and provide impulses to rethink off-road autonomy. 

Takeaway 1: Think like a human

Human perception is powerful and serves as a blueprint for 
designing perception and safety systems that can adapt to 
their surroundings. Today, autonomous systems are often 
static. Requirements and architectures have been derived 
during development time and cannot be adapted during 
runtime. Some techniques, such as Machine Learning, have the 
general ability to adapt but are opaque, and safety and reliabil-
ity are not assured. Behavior networks represent a missing link 
to make systems adaptive and certifiable.

Role of safety standards | Conclusion and takeaways



9

Future perspective:  Managing the unforeseeable

Takeaway 2: It is all about interaction

Simultaneous bottom-up and top-down processing is key 
to highly performant, reliable, and safe machinery. Sensory 
information is often ambiguous, and the context defines how 
the interpretation should be done. Therefore, perception and 
control systems must change during runtime and adapt to 
environmental circumstances. This can be achieved through 
decomposition and interaction.

A critical remark is that algorithms or Machine Learning 
models are not standalone perception solutions but part of 
a bigger perception system that requires systematic pre- and 
post-assessment. The bare-metal deployment of such models 
is a frequent misconception in state-of-the-art autonomy.

Takeaway 3: Situational context matters

Context defines how to interpret sensory measurements and 
how to assess risk. Therefore, systematic context incorporation 
is crucial for autonomous machinery. Connecting symbolic 
knowledge, such as heavy rain, to sensory measurements 
is challenging. This challenge has been solved by deploying 
non-discrete modeling techniques, such as Bayesian and 
behavior networks, which can handle and resolve conflict 
information. 

Takeaway 4: Don’t get surprised

Surprise is an important indicator of system health and context 
compliance. Therefore, robotic systems should provide expec-
tations that can sometimes result in surprises. An unsurprised 
autonomous system is working within the predefined specifi-
cation. However, sometimes it is necessary to go beyond what 
is known and previously expected.

Future perspective:  Managing the unforeseeable

Creating safe off-road machinery for known environments and 
domains is already extremely challenging. However, sometimes 
the demands on off-road machinery go far beyond that goal, 
and autonomy must manage the unforeseeable. The concepts 
presented above provide the foundation for navigating this 
field of future research.

One key to discovering the boundaries of the design domain 
for autonomous systems lies in correctly predicting properties 
and recognizing whether an expectation is unmet. A robot’s 
cognition system aims to minimize such surprises. However, 
sometimes a surprise cannot be resolved through parameter 
adaptation or behavioral network reorganization; instead, it 
represents an actual unconsidered situation. This threshold 
can be detected based on situational assessment and can be 
managed with situational risk management.

Future research aims to enable autonomous operation even 
under conditions beyond this point and in unknown circum-
stances. Therefore, the machinery must reason about environ-
mental properties to learn new capabilities ad hoc. Since data 
interpretation depends on context information, this capability 

has to be realized through symbolic analysis and semantic 
processing.

The concepts presented in this whitepaper may have the 
potential to achieve such capabilities. Accordingly, they are 
being systematically enhanced to enable such skills and prove 
whether this hypothesis can hold. For instance, a robot could 
reason using the motions and actions of other vehicles in its 
surroundings to learn new strategies. One example could be 
learning about new pathways not yet considered for traveling. 
For example, the system could learn to drive over a bush that is 
theoretically traversable but would be regarded as an obstacle 
otherwise.

The capabilities of autonomous systems will increase enor-
mously in the future based on experience and the transfer 
of pre-existing knowledge to new domains. As a result, the 
safety engineering of these approaches in the off-road domain 
will experience a shift in mindset since, from a certain point, 
things will go wrong. One future challenge will be to safe-
guard against the highest impact risks and tolerate minor, less 
relevant failures.
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