Webinar #4 Implementing Generic APIs with Generative AI for Seamless Interoperability

Dr. Rodrigo Falcão, Fraunhofer IESE November 28, 2024 Fraunhofer Institute for Experimental Software Engineering IESE

About me...

Dr.-Ing. Rodrigo Falcão, PMP

- Researcher and Project Manager at Fraunhofer IESE, Kaiserslautern, Germany
- ~15 years of industry experience prior to stepping into research
- Software architecture
- Lecturer of Software Architecture at Mannheim University of Applied Sciences, Germany
- Lead researcher for "Generative AI in Software Architecture"

Agenda

- Interoperability 101
- An example scenario
- The problem
- What if...
- Generative AI
- Experiences
- Consequences
- What's next?

Interoperability 101

Quality is a core concern for stakeholders in a software project

capability of a product to exchange information with other products and mutually use the information that has been exchanged.

-- ISO/IEC 25010:2023

APIs are among the most traditional strategies for data exchange with external organizations

When a system needs another system's data, it can either expose or consume an API

An example

(Agricultural Domain)

Agriculture is a huge domain with several interoperability challenges

Huge

- Several subdomains
- Several processes
- Several formats
- Projects are silos

. . .

Interoperability challenges

- Lack of standards
- Organizational challenges
- Technology heterogeneity
- Data quality

Two solution providers implement Farm Management Information Systems to support farming activities

Field boundaries are not the most trivial data type

. . .

The interface can be designed in different ways

Consider that system B expose an API to receive field data

The problem

Fraunhofer IESE

Created with FhGenie / Dall-E

Achieving interoperability via APIs comes at a cost: implementation efforts

Seite 17 28.11.2024 © Fraunhofer

API consumers must invest efforts in complying with the API requirements

Who is willing to take the effort?

If I want field data, the dream is that I expose my API and everyone complies with it!

(But this is everyone's else dream!)

In the aftermath, it's not about exposing or consuming APIs; it's about the effort needed to understand a foreign schema and implement adapters for data conversion.

What if...

WHAT IF...

...our systems were smart to the point that new participants could join the agricultural ecosystem without development efforts to adapt interfaces?

Recently, we at IESE have explored achieving interoperability at runtime

We have tested this idea in the agricultural domain

Generative AI

Created with FhGenie / Dall-E

An LLM is a probabilistic model trained on extensive data to generate meaningful word sequences.

There are several application fields for LLMs in SE

Imagine that System A must no longer concerned about B's schema

With the rise of LLMs, there is an open door for the design of "creative systems"— systems that can perform

human-like tasks to achieve qualities such as interoperability at runtime.

How does it look like for a customer record?

Schema Y

"customer": {
"id": 12345,
"firstName": "John",
"lastName": "Doe",
<pre>"email": "johndoe@example.com",</pre>
"phoneNumber": "+1-555-1234",
"address": {
"streetName": "Main Street",
"streetNumber": "100",
"apartmentNumber": "5B",
<pre>"city": "Springfield",</pre>
"state": "IL",
"zipCode": "62704",
"country": "USA"
}.
"dateOfBirth": "1985-06-15",
"membershipLevel": "Gold",
"registrationDate": "2022-01-10"
}

How does it look like for a customer record?

Schema X "customer": { "id": 67890, "customerData": { "firstName": "Jane", "customerId": 67890, "lastName": "Smith", "name": { "email": "janesmith@domain.com", "first": "Jane", "phoneNumber": "+1-555-9876". "last": "Smith" "address": { }, "streetName": "Elm St", "contactInfo": { LLM @ runtime "streetNumber": "200", "emailAddress": "janesmith@domain.com", "apartmentNumber": "12A", "city": "Metropolis", }, "state": "NY", "address": "200 Elm St, Apt 12A, Metropolis, NY, 10001, USA", "zipCode": "10001", "birthDate": "1990-09-23", "loyaltyTier": "Platinum", "dateOfBirth": "1990-09-23", "membershipLevel": "Platinum",

Prompt: "Convert data from format: <input> to format: <output example>"

Schema Y

Experiences

We tested two strategies to convert real field data from a proprietary schema

We have tried out three LLMs to implement the adapters at runtime

We created a demonstrator to illustrate the strategy "direct conversion"

We used zero-shot prompting in our application

The results???

IT WORKS!

IT WORKS, HOWEVER

However, the details make the difference, as many design decisions must be made when setting up an LLM-based interface.

Some aspects are generic, while others are use-case specific

We tested models from the families Gemma, Llama, and Qwen using two strategies

Who's the best?

We tested models from the families Gemma, Llama, and Qwen using two strategies

Consequences

It is possible to implement effective APIs for data conversion with LLM-based strategies

This can save integration efforts, reduce time to market, facilitate the onboarding of partners in your digital ecosystem, enable dynamic integration in open environments, etc.

No "one-size fits all" software engineers are

🗾 Fraunhofer

What's next?

Next steps includes implementation, expansion, and application in industry

Thank you for your attention!

Stay in touch!

Dr. Rodrigo Falcão Fraunhofer IESE

rodrigo.falcao@iese.fraunhofer.de

linkedin.com/in/rmfalcao

Webinar #4 Implementing Generic APIs with Generative AI for Seamless Interoperability

Dr. Rodrigo Falcão, Fraunhofer IESE November 28, 2024 Fraunhofer Institute for Experimental Software Engineering IESE